Proximal Point Method for a Special Class of Nonconvex Functions on Hadamard Manifolds

نویسندگان

  • G. C. Bento
  • O. P. Ferreira
چکیده

In this paper we present the proximal point method for a special class of nonconvex function on a Hadamard manifold. The well definedness of the sequence generated by the proximal point method is guaranteed. Moreover, it is proved that each accumulation point of this sequence satisfies the necessary optimality conditions and, under additional assumptions, its convergence for a minimizer is obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Convergence of the Proximal Point Method for a Special Class of Nonconvex Functions on Hadamard Manifolds

Local convergence analysis of the proximal point method for special class of nonconvex function on Hadamard manifold is presented in this paper. The well definedness of the sequence generated by the proximal point method is guaranteed. Moreover, is proved that each cluster point of this sequence satisfies the necessary optimality conditions and, under additional assumptions, its convergence for...

متن کامل

Proximal Point Methods for Quasiconvex and Convex Functions With Bregman Distances on Hadamard Manifolds

This paper generalizes the proximal point method using Bregman distances to solve convex and quasiconvex optimization problems on noncompact Hadamard manifolds. We will proved that the sequence generated by our method is well defined and converges to an optimal solution of the problem. Also, we obtain the same convergence properties for the classical proximal method, applied to a class of quasi...

متن کامل

Proximal Point Methods for Functions Involving Lojasiewicz, Quasiconvex and Convex Properties on Hadamard Manifolds

This paper extends the full convergence of the proximal point method with Riemannian, Semi-Bregman and Bregman distances to solve minimization problems on Hadamard manifolds. For the unconstrained problem, under the assumptions that the optimal set is nonempty and the objective function is continuous and either quasiconvex or satisfies a generalized Lojasiewicz property, we prove the full conve...

متن کامل

Proximal Point Methods for Solving Mixed Variational Inequalities on the Hadamard Manifolds

We use the auxiliary principle technique to suggest and analyze a proximal point method for solving the mixed variational inequalities on the Hadamard manifold. It is shown that the convergence of this proximal point method needs only pseudomonotonicity, which is a weaker condition than monotonicity. Some special cases are also considered. Results can be viewed as refinement and improvement of ...

متن کامل

Inexact scalarization proximal methods for multiobjective quasiconvex minimization on Hadamard manifolds

In this paper we extend naturally the scalarization proximal point method to solve multiobjective unconstrained minimization problems, proposed by Apolinario et al.[1], from Euclidean spaces to Hadamard manifolds for locally Lipschitz and quasiconvex vector objective functions. Moreover, we present a convergence analysis, under some mild assumptions on the multiobjective function, for two inexa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008